Service and Maintenance Manual

2 STROKE 50cc
1E40QMB
Cylinder head nuts and exhaust pipe bolts

Tighten at initially 1000 km (600 miles, 2 months), and every 6000 km (4000 miles, 12 months)

If cylinder head nuts are not tightened to the specified torque, may result in leakage of compressed fuel-air mixture and reduce output, tighten the cylinder head nuts in the following procedures:

1. Remove the frame lower covers.
2. Remove the cylinder head cover bolt.
3. Remove spark plug cap.
4. Tighten the nuts evenly one by one to the their specified torque. Tighten the nuts in the order indicated.

Tightening torque:

Cylinder head nut: 15-18N.m

Exhaust pipe bolt: 15-18N.m

Cylinder and cylinder head

Remove carbon every 6000 km (4000 miles, 12 months)

Carbon deposits in the combustion chamber and the cylinder head will raise the compression ratio and may cause preignition and overheating. Carbon deposited at the exhaust port of the cylinder will prevent the flow of exhaust gases, reducing the output. Remove carbon deposits periodically.
SPARK PLUG

Neglecting the spark plug maintenance eventually leads to difficult starting and poor performance. If the spark plug is used for a long time, the electrode gradually burns away and carbon builds up along the inside part. In accordance with the periodic table, the plug should be removed for inspection, cleaning and to reset the gap.

- Carbon deposits on the spark plug will prevent good sparking and cause misfiring. Clean the deposits off periodically.
- If the center electrode is fairly worn down, the plug should be replaced and the plug gap set to the specified gap using a thickness gauge.

Thickness gauge
Spark plug gap: 0.6-0.7 mm (0.024-0.028 inch)
Check the spark plug for burnt condition. If abnormal replace the spark plug as indicated in the chart.

<table>
<thead>
<tr>
<th>NGK</th>
<th>TROCH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPR7HS</td>
<td>E8RTC</td>
<td>If the standard plug is apt to get wet, replace with the plug.</td>
</tr>
<tr>
<td>BPR8HS</td>
<td>E7RTC</td>
<td>Standard</td>
</tr>
<tr>
<td>BPR9HS</td>
<td>E6RTC</td>
<td>If the standard plug is apt to overheat, replace with the plug.</td>
</tr>
</tbody>
</table>

- Tighten the spark plug to the specified torque.

Spark plug
Tightening torque: 15-18N.m

NOTE:
- To check the spark plug, first make sure that the fuel used is unleaded gasoline, and if plug is either sooty with carbon or burnt white, replace it.
- Confirm the thread size and reach when replacing the plug.

FUEL LINE

Inspect at initially 1000 km (600 miles, 2 months) and every 6000 km (4000 miles, 12 months), replace every 4 years.
ENGINE

CONTENTS
Engine components removal with the engine in place
Engine removal and remounting
Engine removal
Engine remounting
Engine disassembly
Engine components inspection and servicing
Bearings
Oil seals
crankshaft
automatic clutch inspection
cylinder head
cylinder
piston
reed valve
engine remounting
oil seals
bearings
bushings
crankshaft
crankcase
rear axle shaft
transmission
starter pinion and starter gear
Movable driven and clutch
Movable drive
Kicking starter
Piston
Oil pump and oil pump driven gear
Intake pipe
Magneto
Engine components removable with the engine in place
The parts listed below can be removed and reinstalled without removing the engine from the frame.

Engine left side
- Kicking starter lever
- Clutch brake pad kit
- Driver left face
- V-belt
- Driver belt right face

Electric starter gear
- Super clutch
- Driven face

Engine center
- Carburetor
- Intake pipe
- Reed valve
- Oil pump
- Worm wheel
- Cylinder head
- Cylinder
- Piston

engine right side
- Cooling fan
- Magneto
- Starter motor
ENGINE ASSY.
- Remove the muffler
- Remove cooling fan cover
- Remove cylinder cover
- Remove cooling fan

- Remove magneto nut with special tools.

- remove magneto rotor and half circle key with special tools.

- remove magneto stator and paper gasket

- remove oil pump
Remove worm wheel and oil seal press board

- remove cylinder head and cylinder

- Place a cloth stopper beneath the piston and remove the circlip with a plier.
- remove the piston pin and piston.

- Remove the kick starter lever.
- Remove side cover

- Remove movable ratchet wheel and clip
• Remove starting driven ratchet wheel by removing the nuts.

• Remove fan (5) and V-belt (6).
• Disassemble the movable drive face (7).

• Remove electric gear press board, electric gear And super clutch

• Remove starter motor
• Remove the clutch housing with the special tool.

• Drain gear oil

• Remove rear axle nut
• Remove rear wheel

• Remove brake shoe⑤ and rear axle⑥.

• Remove the rear brake cam lever①, indicator plate② and camshaft③.
• remove spring ④
• remove cotter pin ⑤ and shaft ⑥
• remove main stand ⑦

• remove gearcase cover

• Remove paper gasket ① and middle gear assy. ②, Remove output gear assy. ③

• remove carburetor

• remove intake pipe

• remove reed valve and paper gasket.
• Remove crankcase fixing shaft

• disassemble crankcase with special tools

• Remove crankcase with special tools

• Remove crankshaft bearing with special tools

 Sliding shaft
 Warning: use a new sliding shaft.
Unscrew clutch shoe nut with special tools.

- Remove the nut while holding down clutch shoe assy. by both hands as shown in the illustration.

WARNING: Gradually back off the clutch shoe assy. pressed down by hands to counter the clutch sparing load. Releasing the hand suddenly may cause the following parts to fly apart.

① nut
② clutch shoe
③ spring

CAUTION:
Do not attempt to disassemble the clutch shoe assy. Otherwise the clutch shoe may be damaged.

- Using a screwdriver or the like, pry up the movable driven face spring guide.

- Remove the pins④, movable driven face⑤ and fixed driven face⑥.
Remove circlip

- Remove bearing with special tool.

CAUTION: Replace the removed bearing with a new one.

- Remove bearing with special tool.

CAUTION: Replace the removed bearing with a new one.

- Remove the spacer

Remove the oil seal from the gearcase cover with the special tool.

CAUTION: Replace the removed oil seal with a new one.
• Remove gearcase cover bearing with special tool

Remove left crankcase oil seal
• do it with special tool

warning: use a new oil seal

• remove left crankcase bearing with special tool
warning: use a new one

• remove left crankcase shock absorber bushing with special tool
warning: use a new bushing

wrap the oil seal with two appropriate size of sheet irons and clamp it, shown as fig.
• Remove right crankcase oil seal with special tool
 Warning: use a new oil seal

• remove right crankcase bearing
 sliding bearing
 warning: use a new bearing
ENGINE COMPONENTS INSPECTION AND SERVICING

BEARINGS

Clear bears with solvent and lubricate with engine oil before inspecting.

Turn the inner ring and check to see that the inner ring turns smoothly. If it does not turn lightly, quietly and smoothly, or if noise is heard, the bearing is defective and must be replaced with a new one.

OIL SEAL

Damage to the lip of the oil seal may result in leakage of the fuel-air mixture or oil.

Inspect for damage and be sure to replace the damaged seal if found.

CRANKSHAFT

CRANKSHAFT RUNOUT

Support crankshaft by “V” block, with the dial gauge rigged to read the runout as shown.

Service limit: 0.05mm (0.002in)

Excessive crankshaft runout is often responsible for abnormal engine vibration. Such vibration shortens engine life.

Condition of big end bearing

Turn the crankshaft with the connecting rod to feel the smoothness of rotary motion in the big end. Move the rod up and down while holding the crankshaft rigidly to be sure that there is no rattle in the big end.

Wear on the big end of the connecting rod can be estimated by checking the movement of the small end of the rod. The method can also check the extent of wear on the parts of the connecting rod’s big end. If wear exceeds the limit, replace connecting rod, crank pin and crank pin bearing.

Service limit: 3.0mm (0.12in)
Connecting rod small end inside diameter

Measure the connecting rod small end diameter with a caliper gauge.
Service limit: 14.040mm

Automatic clutch inspection

The scooter is equipped with an automatic clutch and variable ratio belt drive transmission. The engagement of the clutch is governed by engine RPMs and centrifugal mechanism located in the clutch.

To insure proper performance and long lifespan of the clutch, it is essential that the clutch engages smoothly and gradually. Two inspection checks must be performed to thoroughly check the operation of the drivetrain. Follow the procedures listed.

1. Inspect initial engagement

 Warm up the scooter to normal operating temperature.
 Remove the right frame side cover.
 Connect an electric tachometer to the connecting portion of the magneto lead wire (black with red tracer).
 Seated on the scooter with the scooter on level ground, increase the engine RPMs slowly and note the RPM at which the scooter begins to move forward.

 Tachometer

<table>
<thead>
<tr>
<th>Standard</th>
<th>2900r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>±300r/min</td>
</tr>
</tbody>
</table>

2. Clutch “LOCK-UP” inspection

 Perform the inspection to determine if the clutch is engaging fully and not slipping.
 Warm the engine to normal operating temperatures.
 Connect the electric tachometer to the magneto lead wire.
 Apply the rear brake as firm as possible.
 Briefly open the throttle fully and note the maximum engine RPMs sustained during the test cycle.
 CAUTION:
 Do not apply full power for more than 10 seconds or damage to the clutch or engine may occur.

 LOCK-UP R/MIN

<table>
<thead>
<tr>
<th>Standard</th>
<th>5800r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>±400r/min</td>
</tr>
</tbody>
</table>
If the engine R/MIN doesn’t coincide with the specified r/min range, then disassemble the clutch.

Clutch shoe—inspect the shoes visually for chips, cracking, uneven wear and burning, and check the thickness of the shoes with vernier calipers. If the thickness is less than the following service limit, replace them as a set.

Clutch springs —visually inspect the clutch springs for stretched coils or broken coils.

Service limit: 2.0mm(0.08in)

CAUTION: clutch shoes or springs must be changed as a set and never individually.

Clutch wheel—inspect visually the condition of the inner clutch wheel surface for scrolling, cracks, or uneven wear. Measure inside diameter of the clutch wheel with inside calipers. Measure the diameter at several points to check for an out-of-round condition as well as wear.

Service limit: 110.50mm(4.350in)

DRIVE BELT

Remove the drive belt and check for cracks, wear and separation. Measure the drive belt width with a vernier calipers. Replace it if the belt width is less than the service limit or and defect has been found.

Service limit: 16.0mm(0.630in)

CAUTION: Always keep the drive belt away from any geasy matter.

Drive face

Inspect the belt contact surface of the drive faces for wear, scratches or any abnormality. If there is something unusual, replace the drive face with a new one.
Roller and sliding surface

Inspect each roller and sliding surface for wear or damage.

Driving face spring

Measure the free distance of the driven face spring. If the length is shorter than the service limit, replace the spring with a new one.

Service limit: **104.5mm (4.11in)**

Driven face pin and oil seal

Turn the driven face and check to see that the driven faces turn smoothly. If any stickiness or hitches are found, visually inspect the lip of oil seal, driven face sliding surface and sliding pins for wear or damage.

Driven face

Inspect the belt contacting surface of both driven faces for any scratches, wear and damage.

Replace driven face with a new one if there are any abnormality.

Cylinder head

Decarbon the combustion chamber.

Check the surface of the cylinder head as shown in the illustration for distortion with a straightedge and thickness gauge, taking a clearance reading at several places.

Service limit: **0.05mm (0.002in)**
If the largest reading at any portion of the straightedge exceeds the limit, rework the surface by rubbing it against emery paper laid flat on the surface plate in a lapping manner. The surface must be smooth and perfectly flat in order to secure a tight joint: a leaky joint can be the cause of reduced power output and increased fuel consumption.

CYLINDER

Decarbon exhaust port and upper part of the cylinder, taking care not to damage the cylinder wall surface. The wear of the cylinder wall is determined from diameter reading taken at 20mm from the top of the cylinder with a cylinder gauge. If the wear thus determined exceeds the limit indicated below, rework the bore to the next oversize by using a boring machine or replace the cylinder with a new one. Oversize pistions are available in two sizes: 0.5mm and 1.0mm.

(cylinder gauge)

service limit: 40.075mm(1.5778in)

after reworking the bore to an oversize, be sure to chamfer the edges of ports and smooth the chamfered edges with emery paper. To chamfer, use a scraper, taking care not to nick the wall surface.

NOTE: Minor surface flaws on the cylinder wall due to seizure or similar abnormalities can be corrected by grinding the flaws off with fine-grain emery paper. If the flaws are deep grooves or otherwise persist, the cylinder must be reworked with a boring machine to the next oversize.

PISTON

cylinder and piston clearance

cylinder –piston clearance is the difference between piston diameter and cylinder bore diameter. Be sure to take the maked diameter at right angles to the piston pin. The value of elevation θ is prescribed to be 20mm from the skirt end.

(micrometer)

service limit: 39.885mm(1.5703in)

As a result of the above measurement, if the piston-to-cylinder clearance exceeds the following limit, overhaul the cylinder and use an oversize piston, replace both cylinder and piston. The measurement for the bore diameter should
be taken in the intake-to-exhaust port direction and at 20mm from the cylinder top
surface.

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>service limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>40.005-40.020</td>
<td>40.075</td>
</tr>
<tr>
<td>Piston</td>
<td>39.94-39.955</td>
<td>39.885</td>
</tr>
<tr>
<td>Cylinder to piston</td>
<td>0.06-0.07</td>
<td>0.120</td>
</tr>
</tbody>
</table>

Decarboning

Decarbon the piston and piston ring grooves, as illustration. After cleaning the grooves, fit the rings and rotate them in their respective grooves to be sure that they move smoothly. Carbon in groove is liable to cause the piston ring to get stuck in the groove, and the condition will lead to reduce engine power output.

A piston whose sliding surface is badly grooved or scuffed due to overheating must be replaced. Shallow grooves or minor scuff can be removed by grinding with emery paper of about #400

Piston pin bore

Use a caliper gauge to measure the piston pin bore inside diameter.

If reading exceeds the following service limit, replace it with a new one.

(Dial caliper)

Limit service: 12.30mm(0.4736in)

Piston pin outside diameter:

Use a micrometer to measure the piston outside diameter at three positions.

(Micrometer (0-25mm))

service limit: 11.980mm(0.4717in)

Piston rings

Check each ring for end gap, reading the gap with a thickness gauge shown in the illustration. If the end gap is found to exceed the limit, indicated below, replace it.
with a new one.

The end gap of each ring is to be measured with the ring fitted squarely into the cylinder bore and held at the least worn part near the cylinder bottom, as shown in the illustration.

Service limit: 0.75mm (0.030in)

As the piston ring wears, its end gap increases reducing engine power output because of the resultant blow by through the enlarged gap. Here lies the importance of using piston rings with end gaps within the limit. Measure the piston ring free end gap to check the spring tension.

Service limit: 3.6mm (0.14in)

Fix the piston ring in the piston ring groove, measure the ring side clearance with the thickness gauge while matching the sliding surface of piston and ring.

Standard clearance

1st: 0.04-0.06mm (0.0016-0.0024in)

2nd: 0.02-0.04mm (0.0008-0.0016in)

Reed valve

Check the clearance A between reed valve and its seat and the dimension B. If the clearance A is noted to exceed 0.2mm, replace the reed valve assembly. The dimension B is at least 1mm.
ENGINE Reassembly

Reassembly is generally performed in the reverse order of disassembly, but there are a number of reassembling steps that demand or deserve detailed explanation or emphasis. These steps will be taken up for respective parts and components.

Oil seals

Fit the oil seals to the crankcase following the procedure below. Replace removed oil seals with new ones.

- Lubricate the edge of oil seal

- Install oil seal into crankcase carefully with special tool.

Oil seal installation

Bearing

Install new bearing with special tool

Install bearing
shock absorber bushing

Install shock absorber bushing

Install crankshaft bearing
Press bearing into crankshaft

Install crankshaft
- Decide the length between the webs referring to the figure at right when rebuilding the crankshaft.

 Standard width between webs: $38 \pm 0.1\text{mm}(1.496 \pm 0.004\text{in})$

- When mounting the crankshaft into crankcase, it is necessary to pull its left end into the crankcase with the special tool.

CAUTION: Never fit the crankshaft into the crankcase by driving it with a plastic hammer. Always use the special tool, otherwise crankshaft alignment accuracy will be affected.
CRANKCASE

- Wipe the crankcase mating surfaces with cleaning solvent.
- Apply evenly to the mating surface of the right half of the crankcase.
- Tighten the crankcase screws securely.
- Check if crankshaft rotates smoothly.

Install gearcase bearing
Install new bearing and oil seal into gearcase cover with special tool, and tighten anchor pin.
• install output axle

• gearshift

• install middle gear, position pin by installing middle gear axle①, gasket② and thrust gasket③

• install gearcase cover into crankcase and lock bolt.

• tighten each screw

• screw oil drain nut③
tightening torque: 4-7 N.m
(0.4-0.7kg-m,3.0-5.0 Ib-ft)
• Install the bearing (2) in the fixed driven face (1) with the special tool.

• Install sliding bearing (3).
• Install the bearing ① with special tool

• install the spacer ② and circlip③.

• install the new oil seals④ and ⑤ to the movable driven face with the special tool.
• apply grease to the lip of oil seals and groove of inside of movable driven face.

NOTE:
When reinstalling the movable face to the fixed face, make sure that the oil seal is positioned properly.

• install the pin ⑥ at three places on the driven face hub.
• Apply grease lightly to the cam part where the pins are placed.
• Install two O-RINGS⑦.
• Install the movable driven face seat①.

• install the clutch shoe assembly② and nut ③.

• tighten the nut③ to the specified torque with the special tool.

 tightening torque: 40-60 N.M
 (4.0-6.0kg.m 29.0-43.5lb-ft)

• insert the V-belt between the driven faces as deep inside possible while pulling the movable driven face all the way outside to provide the maximum ble clearance.

 CAUTION:
 the belt should be positioned so that the arrows on the belt periphery point the normal turning direction.
 The V-belt contact face on the driven faces should be thoroughly cleaned to be free from oil.

• Thoroughly clean the clutch housing to be free from oil and position it over the clutch shoe assembly.

• tighten the clutch housing nut to the specified torque with the special tool.

 Torque: 40-60 N.M
 (4.0-6.0kg.m 29.0-43.5lb-ft)
Apply grease to all the sliding and rolling surfaces for six roller weights. For each weight, approximately 1.5g of grease should be used.

Mount the three dampers on the movable drive plate and install it on the movable drive face.

Position the O-RING on the movable drive face.

Install the movable drive face cover.

NOTE:
1. Make sure that the movable drive plate is fully positioned inside, or the weight roller may come off.
- Insert the spacer④.
- Position the movable drive face subassembly on the crankshaft as shown in illustration.

NOTE:
Thoroughly clean the belt contact to be free from oil.

- Install the fixed drive fan①.
- Tighten the nut to the specified torque with special tool.
 - Connecting rod fixer
 - Tightening torque: 40-60N.M
 - (4.0-6.0kg-m, 29.0-43.5lb-ft)

- Fill grease in the groove provided inside sliding surface of the kick driven gear and install ② on the end of the crankshaft.
- Wipe off excess grease.

- Install washer③ and spring④.

 NOTE:
 When Installing washer③, face the resin surface of washer to outside.
- Install the retainer⑤.

- Continue turning the fixed drive face⑥ by hand until the belt is seated in and both the drive and driven faces⑦ will move together smoothly with slip.
fill the final gear box with engine oil up to the level hole.

Oil capacity: 90ml

- tighten the oil level bolt to the specified torque.

Tightening torque: 9-15M.M

Starter assy.

- Inject lubrication into start bearing and lubrication in the end of starter shaft

LUBRICATION

- Tighten starter shaft gasket

Install starter ratchet wheel and circlip
- Install the dowel pins
- Install the new gaskets

- apply pants to the clutch cover as shown in the illustration.

NOTE: INSTALL the kick starter lever as shown in the illustration.

Tightening torque: 8-12N.M
(0.8-1.2kg-m, 6.0-8.5lb-ft)

PISTON
- Install the piston rings on the piston.
 - The first and the second ring: keystone ring.

NOTE:
Position the ring so that the marking is on upside.

- It is extremely important that, when the piston is fed into the cylinder, each ring in place should be so positioned as to hug the locating pin as shown in illustration.
apply oil for the piston and install the piston to the connecting rod.

NOTE:
The arrow mark ① on the piston head should point the exhaust side.

- The circlip should be mounted in such a position that the mating ends of the circlip do not coincide with the groove portion of the piston.
- apply oil on the position and cylinder wall surfaces and install the cylinder over the piston carefully.

- tighten the cylinder head nut to the specification.
tightening torque: 18-28N.m

- install right crankcase oil seal press board

- install worm, and lubricate it with JINHONG special lubrication.

Oil pump
- install oil pump into crankcase
torque: 3-5N.m
 (0.3-0.5kg-m, 2.3-3.7lb-ft)
Reed valve

- install reed valve paper gasket.
- Install reed valve
- Install oil hose

Intake pipe

- install intake pipe

Magneto

- clear crankshaft and magneto rotor
- install half circle key
- install paper gasket and stator coil, and then fix them

- tighten to specified torque with special tool

specified torque: 35-45N.m
(3.5-4.5kg.m, 25.5-31.0lb-ft)
• install cooling fan

• install guiding cover

• install fan guiding cover

• install pipe screw ① and screw for tightening muffler to their specified torque.
 ①: 8-12N.m(0.8-1.2kg.m,6.0-8.5lb-ft)
 ②: 18-28N.m(1.8-2.8kg.m,13.0-20.0lb-ft)

• lubricate brake cam shaft with grease.
SERVICING INFORMATION

CONTENTS

Troubleshooting
Special tools
Thread parts tightening torque
Service data
TROUBLESHOOTING

ENGINE

<table>
<thead>
<tr>
<th>Complaint</th>
<th>Symptom and possible causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine does not start, or is hard to start.</td>
<td>Compression too low</td>
<td>1. Excessively worn cylinder or piston rings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Stiff piston ring in place.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Gas leaks from the joint in crankcase, cylinder or cylinder head.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Spark plug too loose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Broken, cracked or otherwise failed piston.</td>
</tr>
<tr>
<td></td>
<td>Plug not sparking</td>
<td>1. Damaged spark plug or spark plug cap.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Dirty or wet spark plugs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Defective CDI & ignition coil unit or stator coil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Open or short high-tension cord.</td>
</tr>
<tr>
<td></td>
<td>No fuel reaching the carburetor</td>
<td>1. Clogged hole in the fuel tank cap.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Clogged or defective fuel cock.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Defective carburetor float valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Clogged fuel hose or defective vacuum hose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Defective CDI & ignition coil unit.</td>
</tr>
<tr>
<td>Noisy engine.</td>
<td>Noise appears to come from piston</td>
<td>1. Piston or cylinder worn down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Piston pin, bearing or piston pin bore worn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Piston rings or ring grooves worn.</td>
</tr>
<tr>
<td></td>
<td>Noise seems to come from crankshaft</td>
<td>1. Worn or burnt crankshaft bearings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Worn or burnt conrod big-end bearings.</td>
</tr>
<tr>
<td></td>
<td>Noise seems to come from final gear box</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Gears worn or rubbing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Badly worn splines.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Worn or damaged bearing of drive shaft or rear axle shaft.</td>
</tr>
<tr>
<td>Slipping clutch</td>
<td></td>
<td>1. Worn or damaged clutch shoes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Worn clutch drum.</td>
</tr>
<tr>
<td>Engine idles poorly.</td>
<td></td>
<td>1. Excessively worn cylinder or piston rings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Stiff piston ring in place.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Gas leaks from crankshaft oil seal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Spark plug gaps too wide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Defective CDI & ignition coil unit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Float-chamber fuel level out of adjustment in carburetor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Clogged jets in carburetor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Broken or damaged reed valve.</td>
</tr>
<tr>
<td>Complaint</td>
<td>Symptom and possible causes</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| Engine runs poorly in high-speed range. | 1. Excessively worn cylinder or piston rings.
2. Stiff piston ring in place.
3. Spark plug gaps to narrow.
4. Ignition not advanced sufficiently due to poorly working CDI & ignition coil unit.
5. Defective magneto stator coil.
6. Float-chamber fuel level too low.
7. Clogged air cleaner element.
8. Clogged fuel hose, resulting in inadequate fuel supply to carburetor.
Replace.
Adjust.
Replace.
Replace.
Adjust or replace.
Clean.
Clean and prime.
Clean. |
| Dirty or heavy exhaust smoke. | 1. Too much engine oil to the engine.
2. Use of incorrect engine oil. | Check oil pump.
Change. |
| Engine lacks power. | 1. Excessively worn cylinder or piston rings.
2. Stiff piston rings in place.
3. Gas leaks from crankshaft oil seal.
4. Spark plug gaps incorrect.
5. Clogged air cleaner element.
6. Float-chamber fuel level out of adjustment.
7. Clogged air cleaner element.
8. Fouled spark plug.
9. Sucking air from intake pipe.
10. Slipping or worn V-belt.
11. Damaged/worn rollers in the movable drive face.
12. Weakened movable driven face spring.
13. Too rich fuel/air mixture due to defective starter system. | Replace.
Replace.
Replace.
Adjust or replace.
Clean.
Adjust or replace.
Clean.
Clean or replace.
Retighten or replace.
Replace.
Replace.
Replace. |
| Engine overheats. | 1. Heavy carbon deposit on piston crown.
2. Defective oil pump or clogged oil circuit.
3. Fuel level too low in float chamber.
4. Air leakage from intake pipe.
5. Use of incorrect engine oil.
6. Use of improper spark plug.
Replace and clean.
Adjust or replace.
Retighten or replace.
Change.
Change.
Clean or replace. |
SPECIAL TOOLS LISTED BELOW FOR REMOVAL AND REINSTALLATION

<table>
<thead>
<tr>
<th>NO.</th>
<th>TOOL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T01</td>
<td>“T” shape of sleeve</td>
</tr>
<tr>
<td>2</td>
<td>T02</td>
<td>sleeve tools (7mm, 8mm, 10mm, 12mm, 13mm)</td>
</tr>
<tr>
<td>3</td>
<td>T03</td>
<td>flywheel remover</td>
</tr>
<tr>
<td>4</td>
<td>T04</td>
<td>sleeve (18mm, 24mm)</td>
</tr>
<tr>
<td>5</td>
<td>T05</td>
<td>screw remover</td>
</tr>
<tr>
<td>6</td>
<td>T07</td>
<td>cylinder pressure gauge</td>
</tr>
<tr>
<td>7</td>
<td>T08</td>
<td>piston pin remover</td>
</tr>
<tr>
<td>8</td>
<td>T09</td>
<td>spark plug remover</td>
</tr>
<tr>
<td>9</td>
<td>T10</td>
<td>flywheel lockbolt remover</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>clutch clamp</td>
</tr>
</tbody>
</table>

① ② ③
Tightening Torque of Screw Thread Parts

Engine

<table>
<thead>
<tr>
<th>Item</th>
<th>N. M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder guide cover tapping screw</td>
<td>1-4</td>
</tr>
<tr>
<td>Fan guide cover lock bolt</td>
<td>10-12</td>
</tr>
<tr>
<td>Cylinder cover locknut</td>
<td>15-18</td>
</tr>
<tr>
<td>Spark plug</td>
<td>15-18</td>
</tr>
<tr>
<td>Inlet pipe lock bolt</td>
<td>10-12</td>
</tr>
<tr>
<td>Cooling fan impeller lock screw</td>
<td>10-12</td>
</tr>
<tr>
<td>Flywheel lock bolt</td>
<td>45-50</td>
</tr>
<tr>
<td>Magneto stator coil lock screw</td>
<td>10-12</td>
</tr>
<tr>
<td>Magneto exciting lock screw</td>
<td>3-5</td>
</tr>
<tr>
<td>Oil pump lock screw</td>
<td>5-9</td>
</tr>
<tr>
<td>Right crankcase lock bolt</td>
<td>10-12</td>
</tr>
<tr>
<td>Bearing press board lock bolt</td>
<td>10-12</td>
</tr>
<tr>
<td>Cylinder double head bolt</td>
<td>15-18</td>
</tr>
<tr>
<td>Motor tightening bolt</td>
<td>10-12</td>
</tr>
<tr>
<td>Left crankcase cover lock screw</td>
<td>10-12</td>
</tr>
<tr>
<td>Left crankcase cover lock bolt</td>
<td>10-12</td>
</tr>
<tr>
<td>Main drive wheel face locknut</td>
<td>35-38</td>
</tr>
<tr>
<td>Driven wheel face locknut</td>
<td>35-38</td>
</tr>
<tr>
<td>Driven wheel face clutch locknut</td>
<td>55-60</td>
</tr>
<tr>
<td>Exceeding clutch outside lock screw</td>
<td>10-12</td>
</tr>
<tr>
<td>Electrical start idle press board screw</td>
<td>10-12</td>
</tr>
<tr>
<td>Gearcase lock bolt</td>
<td>10-12</td>
</tr>
<tr>
<td>Left crankcase discharging oil hole lock bolt</td>
<td>22-25</td>
</tr>
<tr>
<td>Left crankcase positioning pin shaft locknut</td>
<td>18-22</td>
</tr>
</tbody>
</table>
SERVICE DATA

CYLINDER+PISTON+PISTON RING

<table>
<thead>
<tr>
<th>ITEM</th>
<th>STANDARD</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston to cylinder clearance</td>
<td>0.06-0.07 (0.0024-0.0028)</td>
<td>0.120 (0.0047)</td>
</tr>
<tr>
<td>Cylinder bore</td>
<td>40.005-40.020 (1.5750-1.5756)</td>
<td>40.075 (1.5778)</td>
</tr>
<tr>
<td>Cylinder diameter</td>
<td>39.94-39.955 (1.5724-1.5746)</td>
<td>39.885 (1.5703)</td>
</tr>
<tr>
<td>Cylinder distortion</td>
<td></td>
<td>0.04 (0.0016)</td>
</tr>
<tr>
<td>Cylinder head distortion</td>
<td></td>
<td>0.04 (0.0016)</td>
</tr>
<tr>
<td>Piston ring free cotter end clearance</td>
<td>1st ring 0.02–0.06mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2en ring 0.02–0.06mm</td>
<td></td>
</tr>
<tr>
<td>Piston ring close end clearance</td>
<td>0.15-0.35 (0.0059-0.0138)</td>
<td>0.8 (0.0315)</td>
</tr>
<tr>
<td>Piston ring to groove clearance</td>
<td>1st ring 0.02–0.06(0.0008–0.0024)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2en ring 0.02–0.06(0.0008–0.0024)</td>
<td></td>
</tr>
<tr>
<td>Piston pin bore</td>
<td>10.002-10.008 (0.3938-0.3940)</td>
<td>10.030 (0.3949)</td>
</tr>
<tr>
<td>Piston pin outside diameter</td>
<td>9.994-10.000 (0.3935-0.3937)</td>
<td>9.98 (0.3929)</td>
</tr>
</tbody>
</table>

CONNECTING ROD+Crankshaft

<table>
<thead>
<tr>
<th>ITEM</th>
<th>STANDARD</th>
<th>LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conrod small end</td>
<td>13.995-14.006(0.5510-0.5514)</td>
<td>14.040(0.5528)</td>
</tr>
<tr>
<td>Conrod deflection</td>
<td></td>
<td>3.0(0.12)</td>
</tr>
<tr>
<td>Conrod web to web width</td>
<td>38-38.1(1.496-1.500)</td>
<td></td>
</tr>
<tr>
<td>Crankshaft runout</td>
<td></td>
<td>0.05(0.002)</td>
</tr>
</tbody>
</table>
CLUTCH

Unit: mm(in)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>STANDARD</th>
<th>LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch wheel inner diameter</td>
<td>112.00-112.15(4.410-4.415)</td>
<td>112.5(4.429)</td>
</tr>
<tr>
<td>Clutch shoe thickness</td>
<td>1.8(0.071)</td>
<td>1.2(0.005)</td>
</tr>
<tr>
<td>Clutch engagement</td>
<td>3000 ± 300r/min</td>
<td></td>
</tr>
<tr>
<td>Clutch closedown</td>
<td>6000 ± 300r/min</td>
<td></td>
</tr>
</tbody>
</table>

TRANSMISSION SYSTEM+DRIVING CHAIN

Unit: mm(in) EXCEPT RATIO

<table>
<thead>
<tr>
<th>ITEM</th>
<th>STANDARD</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final reduction ratio</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Gear reduction ratio</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Drive belt width</td>
<td>16.8-17.2(0.6614-0.6772)</td>
<td>16.4(0.6457)</td>
</tr>
<tr>
<td>Driven face spring free distance</td>
<td>69(2.72)</td>
<td>64.5(2.54)</td>
</tr>
</tbody>
</table>